
Building,
Testing &
Deploying
Android Apps with Jenkins

Christopher Orr

First, a quick bit about what my connection is to this topic...

I work in Cologne, Germany for a company called iosphere. Who kindly gave me the
time to come here today.
We create mobile apps for various customers, and have some of our own products.

Our main app product at the moment is OffMaps for iOS.

This is an offline maps app which uses OpenStreetMap data, which we process and
clean-up, add relevant Wikipedia articles for offline use, plus we also have our own
datasets making the app useful for tourists.

All of this is displayed using our own vector rendering engine.

But we also make Android apps. This is what I do, and I've been a full-time Android
developer for four years.

We use Jenkins for making maps for OffMaps from OpenStreetMap data, building and
testing our apps, plus more. I helped set up a lot of our Jenkins setup, extending
plugins and so on.

[Android is the problem]

So, on the subject of Android, there are a couple of problems we face when trying to
develop great apps...

The first problem is Android.

People talk about Android "fragmentation", but I think of it more as "diversity" -- it's
amazing that Android runs on smartphones, tablets, TVs, games consoles, glasses,
vending machines...

Google Play confirms this diversity for us. Whenever you upload an APK, it shows
this ever-increasing number of supported device models.

But the downside is, this diversity is a pain for anyone hoping to provide apps with a
consistent user experience.

So Android itself is one problem.

[Developers are the problem]

The next problem we encounter during the development process is... developers.

If you're on your own and have no deadline, you can maybe write the perfect app that
runs perfectly on every device.
As you add people and deadlines, this becomes even less realistic.

Plus with developers you end up with issues with build and build tools:
- "Runs on my machine"
- Building in different ways with different SDK tools
- Compiling and testing with different OS versions and devices

Plus people sometimes just merges a load of crap and someone has to go track it
down.

So, how can we try and make life easier for us?

Jenkins is the most popular continuous integration server.

CI means continuously doing small quality checks, like compiling your app and its
dependencies and running automated tests (ideally for every code change), so that
developers get feedback fast.
By doing this ASAP you’re less likely to end up with time-consuming issues later in
the development process.

Jenkins is a flexible piece of software that helps you to do this.

It's open source, super-simple to install, actively developed, and can be used to
automate just about anything...
There are packages or installers for all commonly-used operating systems and has
over 65,000 installs.
And it’s used by some big names: eBay, GitHub, Google, NASA, Netflix, Samsung...

Let’s look a little about how Jenkins fits into your workflow, and how continuous
integration works in general.

Commit code

Jenkins fetches
committed code

Compile & test

Jenkins reports
on build result

To do something in Jenkins, create a job.
This is a list of instructions.

Set up a job, and commit your code as usual.

Repo pushes changes, or Jenkins polls for updates. Or cron.
The code is then built, and tested etc...
Jenkins reports on the results, e.g. sends an email to culprits.

So you get feedback within minutes, while the culprit is still around...

You can run Jenkins on any OS, so here you can have your Linux machine for
Android, Mac for iOS builds etc.
These machines can be your own computer, a server in your network, or anything you
can reach via SSH. Including EC2 etc...

So, this sounds good. But how does Jenkins get my code, and how does it work with
Android or iOS etc.?

The answer is: Plugins.

There are over 700 plugins released for Jenkins, so every use case is covered. If not,
you can write your own plugin.

Categories of plugins include:
- SCM
- Execution environment
- Build steps
- Notifiers

So, let's see how this works with Android.

Building

The first step with Jenkins is building an app.

Prerequisites
● Code

● JDK
● Java build tool

(Ant, Gradle, Maven)

● Android SDK tools
● Android platform

Jenkins
● Git plugin

(SVN, Mercurial, Perforce, …)

● Automated install
● Automated install

● Automated install
(Android "Emulator" plugin)

→
Building an Android app

What do we need to build Android apps?

Ant / Gradle / Maven
+ Android SDK with its custom Java tools etc.

Jenkins has support for all these tools, and can automatically install many of them for
you.

Jenkins also has the "Android Emulator Plugin", which has a slightly misleading name
-- it will also auto-install all the Android dependencies and help with building your app.
This is cool -- it automates a *lot* of things for you.

Ok, getting started is pretty easy, so how do we actually build an app?

1. Check out code

2. Run "Create Android build files" step
↳ Android SDK & platforms are downloaded
↳ Android Ant build files are created/updated

3. Run build tool with sdk.dir=$ANDROID_HOME
↳ Project is compiled; .apk is created

Building an Android app

We create a new job, and configure it with three basic building blocks.

When you check out a repo, you need to create the build files, or at least tell Android
where your SDK directory is (e.g. the local.properties file).

We'll take a look at this in a minute.

Demo

Testing

Ok, now we have a Jenkins job which is building your APK.

This builds our software in an independent environment and gives us feedback as
soon as possible. Great.

What next? We can do some automated testing?

So what's the first step?

Test frameworks & tools

JUnit support built-in

xUnit plugin

Build Failure Analyser

In order to run tests, we first need to write tests!

While I won't cover writing tests here, there are various frameworks which make it
easy to get started.
Android uses JUnit3; there are projects like Robotium, Roboelectric...

So how do these fit into Jenkins?

Basically, so long as your tests can output JUnit XML (or similar), Jenkins can
handle it, out-of-the-box.
You can use the android-junit-report project to easily output JUnit XML from your
Android test runs.
If you can't, for some reason output this, use the BFA plugin.

So, how do we run tests in Jenkins?

1. Enable "Run an Android emulator during build"
↳ Automatically creates an emulator if required

2. Copy APKs from previous job
↳ "Copy Artifact" plugin

3. Run "Install Android package" step
4. Run "Execute shell" step: adb shell am instrument
5. Get JUnit XML output from emulator
6. Parse the JUnit XML

Creating a test job

Android emulator plugin

This lets you tell Jenkins, for example, "I want an Android 4.1 emulator, with a 10MB
SD card, set to British English", and Jenkins will then automatically generate that
emulator, start it up, and start saving all of the log output to disk.

And, if you don't have the Android SDK installed on your build machine, or the correct
platform version for the emulator you want, then Jenkins will automatically install them
for you.

Once you're done, Jenkins will automatically shut down the emulator at the end of the
build.

Matrix jobs

Ok, so Jenkins can generate new emulators for us automatically, which saves us
some time.
But this doesn't really help us against the problem of multiple OS versions, screen
sizes, languages etc...

Multi-configuration or "matrix" jobs are a very cool Jenkins feature -- these run the
same basic job configuration multiple times, but each time with one variable
changed, until all combinations have run.

These variables can be things like operating system, compiler version, anything you
care about.

Important to us:
- Android version
- Screen size or density
- Locale

The advantage of running your tests across these combinations is that you can find
subtle bugs which are specific to a particular screen size, language or OS version.

I've personally found some problems that probably would not have been found, even
with lots of manual testing:
- Forgetting or mistyping "android:id" constants in obscure layouts (e.g. layout-de-ldpi-
land), causing crashes on certain devices
- Not including the correct number of %s parameters in strings in other languages

(though Lint helps with this now)
- String formatting problems with decimal point vs decimal comma in German/English
- Important! SQLite version changes often (undocumented) between OS versions: I
found certain advanced SQL queries were broken on older OS versions

Emulator
tests JVM tests

Build APK

Matrix job

Jobs are easy to create in Jenkins, so create as many as you need to split things
up logically.

You can also create relationships between jobs.

e.g. Create a fast-feedback build job, then kick off a fast JVM test job and a slow
integration test job at the same time.
You can use the Build Flow plugin to create graphs like this one.

So let's take a look at testing.

Demo

Deploy

Distribution
So we’ve automated building and running of tests. Automation is fun.

But how about getting the app into the hands of users?

For example:
- QA department
- curious product managers
- your list of beta testers

Basic
↳ Push to webserver with "Publish over..." plugins

Third-party solutions
↳ Plugins available for all the most popular services

HockeyApp
TestFlight
Zubhium

Still waiting for a Google Play API to appear…

Deploying an APK

There are various ways we can get an APK out from Jenkins to users.

No trigger
↳ Every successful build gets deployed

Manual
↳ Click the "Build now" button yourself

SCM-triggered
↳ Pushing a git tag triggers a build and deploy

Build promotion
↳ "Only manually-tested builds may be deployed"

Triggering a deployment

Ok, so that’s how we can upload an APK, but when can this be done with Jenkins?

The first two are simple.

The third is something I do: set up Jenkins to only publish your APK to HockeyApp (or
wherever) when you apply a certain git tag (e.g. “beta/*”).
This means the only manual step involved to compile, test, upload and notify beta
testers is to run “git tag && git push --tags”. Jenkins automates the rest.

The Build Promotion plugin is a more advanced way to do this; allowing you to add
some logic like “this app must pass all the stress tests before I ‘promote’ it to be a
beta APK”, or “this APK needs to be manually approved by QA before going for
upload”.

Recipe plugin

Quick aside

So far we've done a lot of the Jenkins setup manually in the demos.

The new Recipe Plugin for Jenkins lets you capture all the configuration, plugins and
dependencies for a series of Jenkins jobs and wraps it into a single file, or “recipe”.
You can publish these recipes from the Jenkins UI, or download recipes from others.

When you download a recipe that somebody has created, it will automatically set up
all the jobs and install all the plugins required. Magic.

Build promotion

A quick example of Build Promotion.

Build the app, run some automated tests. Someone from QA then comes along and
clicks “Approve” -- only then is the build promoted.
Promoting the build will then do other stuff, like upload it ready for beta testers to
download.

 Push code

Build

Test

 ApproveDeploy
Push to

user

It's maybe hard to visualise the whole process, so here's an overview.

Essentially the only manual part is the initial code push by the developer.

Everything else after this is completely automated.

HockeyApp
JUnit Attachments
Publish Over...
Recipe
TestFlight
Workspace Cleaner
Zubhium

Android Emulator
Android Lint
Build Failure Analyser
Build Flow
Build Promotion
Copy Artifact
Git

Plugins

Android JUnit XML Test Runner
https://github.com/jsankey/android-junit-report

Here are the plugins and projects mentioned...

https://github.com/jsankey/android-junit-report
https://github.com/jsankey/android-junit-report

The end
chris@orr.me.uk
chris@iosphere.de

chris.orr.me.uk/+
github.com/orrc

Conclusion:
- Use Jenkins.
- Use the plugins.

