
Building, testing and
deploying mobile apps
with Jenkins & friends

Christopher Orr
https://chris.orr.me.uk/

This is a lightning talk which is basically described by its title, where "mobile apps"
really means Android and iOS.

We'll try show some useful Jenkins plugins, config and open source tools.

My connection to this topic?

I work in Cologne, Germany for a company called iosphere.

We make mobile apps, mainly for...

iOS!

But we also do...

Android!

I've been working full-time as an Android developer since 2009.

Despite working in Germany for this time, I'm originally from...

Scotland!

I'm involved in the Jenkins project and have worked quite a lot on Android-related
plugins.

Working with my iOS colleagues, I've helped improve our iOS build, test and
deployment setup, and also contributed to some more Jenkins plugins along the
way...

Building

Ok, let's start with the first topic, building.

Building: Prerequisites

Built-in

Android Emulator plugin
↳ automated install

Ant / Maven

Android SDK tools
Android platform(s)

XCode + command line tools
↳ manual setup

xcodebuild
iOS SDK

What do we need to build mobile software with Jenkins?

Android projects normally use Ant or Maven as build tools.
We also need the Android SDK tools and Android platforms to build against.

Ant and Maven support are built-in to Jenkins.
Jenkins has the "Android Emulator Plugin", which can help install the Android stuff.

iOS uses xcodebuild to build, and requires that you have the iOS SDK installed, plus
the command line tools.
So there's some manual setup involved -- this stuff isn't all automated yet.

Building: Not so different...

Get code

Prepare
"Install Android project prerequisites"
step
"Create Android build files" step

Build
XCode plugin

Archive

Building mobile apps isn't hugely different from building any other type of project with
Jenkins.
You need the code, do some setup, then build and archive.

The Android Emulator plugin can install any required platforms, and create the
standard Ant build files for you (if you don't already have them in the repo).

Then you can just use Ant, or Maven, or the XCode plugin.

The XCode plugin automates loads of features -- building, packaging, signing etc...
All you need is basically to provide the Target (e.g. Debug or Release) and your
XCode file.

**/*.apk

Archive the artifacts

Once your app is built, archive it!

This is an important principle in Jenkins: build your app once, and let Jenkins take
care of the build artifacts.
Then you can use the artifacts in later jobs, without doing nasty things like hardcoding
paths to the workspace where the app was built previously -- you can't rely on the
workspace still existing, the build slave still being online etc...

Just enable the "Archive the artifacts" option and enter a pattern like **/*.ipa to gather
all the IPA packages...

Recipe Plugin

Talking about this config here is a bit abstract. How can you take this info and put it
into practice in your own Jenkins instance?
It would be great if there was a way to share this type of configuration.

Thankfully we have the nice new Recipe Plugin.
This lets us share job, view and plugin configurations.

I've shared a couple of recipes relating to the topics in this talk, so go install the
plugin!

Testing

Ok, with the app built, let's run some tests.

The first step is to write some tests...

Testing: Frameworks & Tools

- JUnit support built-in

- xUnit plugin

- JUnit attachments plugin

- Build Failure Analyser

OCUnit

KIF

We can't cover writing tests here, but there are plenty of frameworks which make it
easy to get started.
So how do these fit into Jenkins?

Jenkins has built-in support for JUnit; it can parse JUnit XML and present nice trend
graphs and tables of tests, time spent executing, regressions, fixes and so on.

Basically, so long as your test framework can output JUnit XML -- or you can write a
script to generate it -- you're good. Any format that the xUnit plugin supports is also
good.

If you can't or don't want to do this, you can also check out the Build Failure Analyser
Plugin, which we'll check out quickly.

Testing: Running & Results

Copy artifacts from latest build (.apk, .ipa...)

Android Emulator Plugin
"Run an Android emulator during build"
"Install Android package"

iOS Device Connector Plugin
"Deploy iOS app to device"
Other possibilities?

Extract JUnit XML from device, or generate it

Publish test report

As for actually running the tests, here's a quick look at what we'd do.

We'd create a new Jenkins job where we import the previously-archived app files, i.e.
the APK or .ipa or .app...

Then we have Jenkins plugins to help:
- Android Emulator will create an emulator for you, and help you to install APKs into it.
- iOS Device Connector will let you push a .ipa or .app onto an iOS device plugged in
anywhere on your Jenkins cluster

--- Aside ---
While the Android stuff is fairly reliable and the command line tools are fairly
cooperative and scriptable, this isn't always the case in the iOS world, in my
experience.

AFAIK, it's difficult to reliably start/stop the simulator in an automated environment
without some effort, and it's not really possible to run multiple simulators in parallel.
From experience with the iOS Device Connector, running tests on multiple physical
devices in parallel can also be flaky.
Unit testing is somewhat broken in general, I believe. Apple like to break things in
XCode now and then...

But I'm very happy to be proven wrong :)
There are always things that can be improved for all mobile platforms with Jenkins...

Anyway, once you've run your tests on a device, emulator or simulator, you need to
extract or generate the machine-readable result, and let Jenkins parse it.

Then you get pretty graphs!

Testing: Running & Results

Here are some examples of an Android app with JUnit results and Emma code
coverage graphs.

JUnit
Attachments

Another handy test-related plugin is the JUnit Attachments Plugin.

If you write "[ATTACHMENT|/path/to/screenshot.png]" into your JUnit XML, this plugin
can pick up on that and show those file(s) linked directly to the relevant test results in
the Jenkins UI.

You can use this any type of file, but as this example shows, we've integrated it with
our KIF tests for iOS.
We use this for testing, and the screenshots are really helpful to find very quickly
where and why something broke.
e.g. The Jenkins build will say "Test X failed", and clicking that link will show the
screenshot, maybe with a dialog saying "No network connection".

We also use KIF and this plugin for automating the laborious and tedious job of
generating app-store screenshots, on multiple devices, for multiple languages.

JUnit
Attachments

When the JUnit Attachments plugin detects that you've attached an image, it shows it
in a nice lightbox.

You can then use the arrow keys to flip back and forth through the images. Handy.

Build Failure Analyser

As mentioned, if you can't get nice JUnit output out of your device, you can also try
another new plugin.

Robert Sandell and his colleagues at Sony Mobile wrote the BFA Plugin.

If a build fails, oftentimes you have to manually search through the console output
looking for the reason.
The BFA plugin automates this -- you define some regular expressions and the
associated description once, and then the plugin applies this to any failed builds and
shows the result on the build page.

Here's an actual failure from our build system at iosphere -- a build was started using
the iOS Device Connector plugin, but somebody had unplugged the configured
device...

Deploy

Having successfully built and tested our mobile apps, let's push them into the hands
of our users, beta testers, QA department, or whomever...

Triggering a Deployment

No trigger
↳ Every successful build gets deployed

Manual
↳ Click the button yourself

SCM-triggered
↳ Build and deploy for git tags

Build promotion
↳ "Only manually-tested builds may be deployed"

Jenkins provides various ways of making a deployment happen.

Say you have a Jenkins job which does all of your deployment logic. Again, this job
should take an archived app artifact and then perform the relevant deployment logic.

But how to run this job?
- You can simply run this job after every successful build

- If you don't want to deploy every commit, you can simply manually start the job

- You can build the app and deploy it, but only when a certain SCM tag is pushed to
the repo (e.g. at iosphere we automatically start deployments when somebody tags
the git repo with a pattern like "deploy/beta-1")

- You can use the Build Promotion Plugin to define more advanced workflows...

Build Promotion

Here's an example of a workflow defined using Build Promotions.

This is the page in Jenkins for a given build of an app.
The app has been built, but it's waiting to be "promoted" -- which then can kick of one
or more pre-defined steps.

In this case, the app would be downloaded from this page by a tester, who would
manually test the app.

When they're satisfied with the built app, they could click the "Approve" button to
promote this build.

Build Promotion

Now that this build was approved, you can see that it kicks off another Jenkins job,
deploying the app.

Deploying the App

Basic
↳ Push to webserver with "Publish over..." plugins

iOS ad-hoc deployment plugin
↳ Generate ad-hoc metadata and push to webserver

(Not quite ready)

Third-party solutions
↳ Plugins available for all the most popular services

HockeyApp
TestFlight
Zubhium

So that's when the app would be deployed, but how would we do so?

Again, there are multiple options and plugins to help.

- For Android, we could simply use a "Publish over..." plugin to publish an APK to a
webserver, via SSH, FTP, SMB etc...

- For iOS, it's less simple. For ad-hoc deployment, before pushing to a webserver you
also need to generate some metadata -- a .plist file.
 - There's a plugin currently being built called "iOS ad-hoc deployment plugin" which
does this automatically for you.

- Finally, there are third-party solutions which host apps for you, providing ad-hoc
distribution, push notifications to users when new versions are available, plus
analytics
 - Jenkins has plugins for all the most popular services, so you can simply specify the
app artifact plus your service API key and your app is deployed!

From developer to user

 Push code

Build

Test

 Approve
Deploy

Push to
user

It's maybe hard to visualise the whole process, so here's a basic overview.

Essentially the only manual part is the initial code push by the developer.

Everything else after this can be completely automated.

Thanks to...

Plugins
Android Emulator
Android Lint
Build Failure Analyser
Copy Artifact
HockeyApp
iOS Device Connector

OTA Ad-hoc Deployment
Promoted Builds
Recipe
Release
Warnings
XCode

Images
"Broadway Tower", by Newton2 at en.wikipedia [CC BY 2.5]
https://commons.wikimedia.org/wiki/File%3ABroadway_tower.jpg

"Digital Multimeter", by oomlout on Flickr [CC BY-SA 2.0]
http://www.flickr.com/photos/snazzyguy/3811449250/

So, that's pretty much it.

Check out some of the plugins I mentioned.
I think the Recipe plugin will really take off for sharing "best practices", which will be
excellent.

Of course, there are also about 30 different plugins for various source control
systems, like Git, SVN, Mercurial, which I haven't mentioned here.

Recipes!
tinyurl.com/recipeplugin

Slides!
chris.orr.me.uk/jenkins-mobile-recipes

What can be improved?
Next session: Jenkins dev discussion

Donate!
jenkins-ci.org/donate

Check out the Recipe Plugin and the recipes (so far I published a basic Android build
recipe, plus a demo recipe showing how to start a build based on a git tag).

Every week, Jenkins itself gets downloaded 50,000 times and there are half-a-million
plugin downloads...
Nobody gets paid by the project, but it needs to pay for servers, SSL certificates,
stickers, flyers...
So donations are appreciated and, relevant to the FOSDEM audience, you can now
donate in Euros! This is even tax-free in Germany :)

Give us feedback!
Please, tell us if and how your use the you use Jenkins and mobile.
How can we improve?
What are your needs?

Happy building!

